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A new Monte Carlo algorithm for 3D Kawasaki spin-exchange simulations and 
its implementation on a CDC CYBER 205 is presented. This approach is 
applicable to lattices with sizes between 4 x 4 x 4  and 256xL2xL3 
((L2 + 2)(L3 + 4)/4 ~< 65535) and periodic boundary conditions. It is adjustable 
to various kinetic models in which the total magnetization is conserved. 
Maximum speed on 10 million steps per second can be reached for 3-D Ising 
model with Metropolis rate. 
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1. I N T R O D U C T I O N  

Since supercomputers ,  like the C D C  C Y B E R  205, are employed  for M o n t e  
Car lo  s imulat ions ,  physicists  are look ing  for a lgor i thms  which fit best  to 
the archi tec ture  of those computers .  F o r  the o rd ina ry  Ising model ,  the first 
s tep was taken  in 1984 when a highly op t imized  mul t i sp in  coding  algo-  
r i thm for a scalar  C D C  c o m p u t e r  was t ransferred to a C D C  C Y B E R  
205/1) A l though  the speedup  was a cons iderab le  factor  of 15, the resul t ing 

vector ized p r o g r a m  revealed some problems.  The  access to the l o o k u p  
table  for the t rans i t ion  probabi l i t i es  was a bo t t l eneck  of  the p rog ram,  
because it requi red  a G A T H E R - c o m m a n d ,  which is more  than  twice as 
slow c o m p a r e d  to a usual  vector ized opera t ion .  In  addi t ion ,  the implemen-  
ta t ion  of per iodic  b o u n d a r y  condi t ions  in c o m b i n a t i o n  with vec tor iza t ion  
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appeared to be nontrivial; therefore, the helical boundary conditions were 
used. Later, two methods were published which avoid the use of a lookup 
table. (2'3) The first is restricted to transition probabilities which can be 
expressed as a power of a basic Boltzmann weight (the Metropolis is an 
example); the second is strictly restricted to the Metropolis method. The 
problem of an elegant implementation of periodic boundary conditions was 
still not solved. Recently there was a major breakthrough: Wansleben (4) 
invented a new algorithm which is adjustable to various transition 
probabilities, but does not use a lookup table. His implementation on the 
CYBER 205 realized periodic boundary conditions in all lattice directions 
in a very ingenious way, which made him able to advance the speed up to 
27 nsec/update (38 million updates/see) with the Metropolis rate. 

The question then became whether it would be possible to extend the 
ideas to Kawasaki spin-exchange dynamics. Wansleben tried to make some 
simple modifications in order to incorporate the conservation law, but 
failed. Sullivan (s) reported the first efficient vectorizable algorithm for 2D 
spin-exchange models in which they decomposed a 2D lattice into 16 sub- 
lattices. In this paper, I generalize Wansleben's idea and decompose a 3D 
lattice into 16 sublattices (16 is the minimum number of independent sub- 
lattices. Using Sullivan's method, one would have to have 64 sublattices). 
The maximum speed, 10.2 million updates/see, can be reached by equi- 
librium simulations with Metropolis rate. This algorithm was applied to a 
nonequilibrium stochastic lattice gas model. (6'7) The difficulties in applying 
this algorithm to such nonequilibrium systems will be discussed. 

2. THE A L G O R I T H M  

The efficiency of the program is due to the application of the multispin 
coding technique in combination with vectorization. Multispin coding is a 
traditional method of high-speed Monte Carlo simulation of Ising models. 
The idea is that the basic storage unit for one Ising variable is one bit of 
a machine word as opposed to one whole word which would be required 
in a straightforward implementation of a Monte Carlo algorithm in a 
high-level language. By applying word Boolean function like "exclusive-or" 
or "and," all spins stored in one word can be treated simultaneously. The 
reader can find a detailed introduction of this technique in refs. 1, 8, and 9. 
The implementation of a multispin coding algorithm for the Ising model on 
a vector computer is explained in refs. 1 and 4. 

In our case, the particle jump is carried out by a logical "exclusive-of' 
operation between the pair of multispin-storage words controlled by an 
exchange word. A 1-bit in the exchange word causes a spin exchange 
between the corresponding pair of storage words, a 0-bit keeps the corre- 
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sponding spins in the old status. Finding a fast multispin algorithm means 
finding an elegant and efficient way to set the 1- or 0-bits in the exchange 
word according to the transition probability of the given stochastic 
dynamics. 

For  equilibrium spin-exchange dynamics, it fills the exchange word as 
follows; in the beginning all the bits are set to 1. Then 1-bits are switched 
into 0-bits in a six-step procedure: 

1. Select a random nearest neighbor pair. 

12. Calculate the number of parallel nearest-neighbor bonds n to the 
pair. 

3. Generate a random number between 0 and 1. 

4. Compare the random number with the transition probability, 
which is a function of n. 

5. Switch from 1 to 0 if n>~5. 

6. Switch from 1 to 0 if the random number is greater than the trans- 
ition probability. 

There are many possibilities to choose among for the transition prob- 
ability. Here we take the Metropolis P(n)= min{ 1, e x p [ - 4 ~ J ( n -  5)3 }.~1o) 

The implementation of this simple algorithm becomes complicated 
when as many steps as possible are carried out simultaneously for all spin 
variables within one word. Therefore, the program is explained by an 
example which shows an equivalent program for a simple integer variable 
IS which stores the value of one bit only. The modification to a vectorized 
code is straightforward. Some of the technique can be found also in ref. 4. 

To illustrate, I describe each step in the syntax of scalar CYBER- 
FORTRAN. 

Step 1 consists of randomly choosing one site with spin variable IREF 
and its nearest neighbor IP in one of the three principle positive directions 
(we call the plus direction). Step 2 uses a binary representation to calculate 
parallel bonds (the nearest neighbors of IREF in the minus, left, right, up, 
and down directions are IM, IL, IR, IU, and ID, respectively; the nearest 
neighbors of IP in the plus, left, right, up, and down directions are IPP, 
IPL, IPR, IPU, and IPD, respectively). We have 

C ....... COMPARING WITH "IREF" NEIGHBORS 
IE1 = XORN(IM,IREF) 
IE = XORN(IR,IREF) 
IE2 = AND(IE,IE1 ) 
IE1 = XOR(IE,IE1) 
IE = XORN(IL,IREF) 

822/56/5-6-25 
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I S C R  = A N D ( I E , I E 1  ) 

IE2 = X O R ( I S C R , I E 2 )  

IE1 = X O R ( I E , I E 1 )  

I e  = X O R N ( I U , I R E F )  

I S C R  = A N D ( I E , I E 1  ) 

IE3 = A N D ( I E , I E 1 )  

IE2 = X O R ( I S C R , I E 2 )  

IE1 -- X O R ( I E , I E 1 )  

IE = X O R N ( I D , I E 1 )  

I S C R  = A N D ( I E ,  IE1) 

ISCR1 = A N D ( I S C R ,  IE2) 

IE3 = X O R ( I S C R I , I E 3 )  

IE2 = X O R ( I S C R , I E 2 )  

IE1 = X O R ( I E , I E 1 )  

C ....... C O M P A R I N G  W I T H  " I P "  N E I G H B O R S  

IE = X O R ( I P P , I R E F )  

I S C R  = A N D ( I E , I E 1 )  

ISCR1 = A N D ( I S C R , I E 2 )  

IE3 -- X O R ( 1 S C R I , I E 3 )  

IE2 -- X O R ( I S C R , I E 2 )  

IE I  = X O R ( I E , I E 1 )  

IE = X O R ( I P R , I R E F )  

I S C R  = A N D ( I E , I E 1 )  

ISCR1 - A N D ( I S C R , I E 2 )  

IE3 = X O R ( I S C R I , I E 3 )  

IE2 = X O R ( I S C R , I E 2 )  

IE1 = X O R ( I E , I E 1 )  

IE  -- X O R ( I P L , I R E F )  

I S C R  = A N D ( I E , I E 1 )  

ISCR1 = A N D ( I S C R , I E 2 )  

IE4 = A N D ( I S C R I , I E 3 )  

IE3 -- X O R ( I S C R I , I E 3 )  

IE2 -- X O R ( I S C R , I E 2 )  

IE1 -- X O R ( I E , I E 1 )  

IE  -- X O R ( I P U , I R E F )  

I S C R  = A N D ( I E , I E 1 )  

ISCR1 = A N D ( I S C R , I E 2 )  

ISCR2 = A N D ( I S C R I , I E 3 )  

IE4 = X O R ( I S C R 2 , I E 4 )  

IE3 = X O R ( I S C R I , I E 3 )  
IE2 = X O R ( I S C R , I E 2 )  

IE1 -- X O R ( I E , I E 1 )  
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IE = X O R ( I P D , I R E F )  
ISCR = A N D ( I E , I E 1 )  

ISCR1 = A N D ( I S C R , I E 2 )  
ISCR2 = A N D ( I S C R I , I E 3 )  
IE4 = X O R ( I S C R 2 , I E 4 )  
IE3 = X O R ( I S C R I , I E 3 )  
IE2 = X O R ( I S C R , I E 2 )  
IE1 = X O R ( I E , I E 1 )  

where the Boolean  funct ions m a y  be thought  of as the b ina ry  opera t ions  
(mod  2): 

A N D ( I X , I V )  = IX*IV X O R N ( I X , I Y )  = 1 - X O R ( I X , I Y )  
X O R ( I X , I Y )  = IX + IY O R ( I X , I V )  = X O R ( I X , I Y )  + A N D ( I X , I V )  

Step 3 employs  a very fast r a n d o m  number  genera tor ,  which will be 
expla ined  later.  

Step 4 can be i l lus t ra ted  by the fol lowing example  with B O L T n  = P(n) 
and R A N D  being the r a n d o m  number :  

C ....... C O M P A R I N G  " R A N D "  W I T H  "BOLTN" 
I F ( R A N D  .GT. B O L T S )  T H E N  
I F L 6  = 1 
E L S E  
I F L 6  = 0 

I F ( R A N D  .GT. BOLT1 ) T H E N  
IFL1  = 1 
ELSE 
IFL1  = 0 
E N D  I F  

C ....... SET T H E  E X C H A N G E - W O R D  " I S C R I "  
ISCR = A N D ( I E 4 , I E 2 )  
ISCR = A N D ( I S C R , I F L S )  
ISCR 1 = A N D N ( 1 , I S C R )  
ISCR -- A N D ( I E 4 , I E 1 )  
ISCR = A N D ( I S C R , I F L 4 )  
ISCR1 = A N D N ( I S C R I , I S C R )  
ISCR = N O R ( I E I , I E 2 )  
ISCR = A N D ( I S C R , I E 4 )  
ISCR = A N D ( I S C R , I F L 3 )  
ISCR1 = A N D N ( I S C R I , I S C R )  
ISCR = A N D ( I E 3 , I E 2 )  
ISCR = A N D ( I S C R ,  IE1 ) 
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ISCR = AND(ISCR,IFL2) 
ISCR1 = ANDN(ISCRI,ISCR) 
ISCR = AND(IE3,IE2) 
ISCR = AND(ISCR,IFL1 ) 
ISCR1 = ANDN(ISCRI,ISCR) 

C ....... C H E C K  EXCLUSION 
ISCR1 = XOR(IREF,IP)  

C ....... P E R F O R M  SPIN-EXCHANGE 
IREF = XOR(IREF, ISCR1) 
IP = XOR(IP,ISCR 1) 

where ANDN(IX, IY)=  IX*(1-IY) mod 2. 
The important features of the examples with respect to vectorization 

as well as multispin coding are: 

1. Besides the if-blocks (and the random number generator), all the 
statements can be carried out simultaneously for all 64 bits of a 
machine word. 

2. Each if-block becomes the single vector statement CALL 
Q 8 C M P G E  on the CDC CYBER 205 with an asymptotic perfor- 
mance speed of 10 nsec/result on the two pipes. 

3. The algorithm takes full advantage of the fact that P(n)= 1 for 
n ~< 5 in the Metropolis rate, which is not possible for other rates. 

4. The words IFLn are filled with 1- and 0-bits regardless of the 
actual configuration. On a multiprocessor machine, this step could 
be performed simultaneously with the calculation of the nearest 
neighbor configuration on an independently working processor. 

3. IMPLEMENTATION OF THE SHIFT-REGISTER R A N D O M  
NUMBER GENERATOR AND R A N D O M  INITIAL 
CONFIGURATIONS 

As discovered by Kalle and Wansleben, (11) the random number 
generator RANF implemented by CDC on the CYBER 205 can yield 
wrong results when large systems are being simulated on the vector com- 
puter. They presented a vectorized version of T R N G  (shift-register 
sequence random number generator introduced by Tausworthe (12) and 
programmed in ASSEMBLER on an IBM370/168 by Kirkpartrick and 
Sto11(13)), which has better statistical properties and has a speed of about 
100 million pseudorandom numbers/see. The basic idea is to realize the 
recursion 

N k +  250 = Nk(~ Nk+ 147 (1) 
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where Nk are integers and �9 denotes the word Boolean operation 
"exclusive-or." This random number generator has a period of 225~ i.e., 
2.6 x 1 0  61 larger than that of RANF. This large period is the main advan- 
tage of TRNG; the drawback in using it on a scaler machine is that 250 
seed integers have to be kept in the memory. Therefore, it is very difficult 
to implement algorithm (1) on a scaler computer without loss of time with 
accesses to the memory. ~13) Since the CYBER 205 is specialized in perform- 
ing memory-to-memory operations with vector instructions, algorithm (1) 
can be considerably speeded up by vectorization. We quote only the 
relavent codes and refor for more details to ref. 11: 

ASSIGN IA,IRAND(1 ;LENGTH) 
ASSIGN IB,IRAND( 148 ;LENGTH) 
ASSIGN IRANDD,IRAND(251 ;LENGTH) 
ASSIGN IC, IRAND(LENGTH + 1 ;250) 
ASSIGN ISEED,IRAND( 1 ;250) 
CALL Q8XORV(0,,IA,,IB,,IRANDD) 
CALL Q8VTOV(0,,IC,,0,,ISEED) 

By these statements, a vector of pseudorandom numbers and a new seed 
represented by the descriptor variables IRANDD and ISLED, respectively, 
are generated with a speed of two numbers/cycle (LENGTH > 250; the first 
250 words may be constructed by using RANF). 

It is easy to generate a random configuration without specifying the 
total magnetization. ~4~ For a given magnetization, we then have to add 
some bit manipulations. 

4. SUBLATTICE STRUCTURE A N D  PERIODIC B O U N D A R Y  
C O N D I T I O N S  

The general idea is to try to decompose the whole lattice into the least 
number of sublattices, on each pair of which may be performed the given 
dynamics independently, and store the spin variables on each sublattice by 
a vector. One can easily convince oneself that the least number of sublat- 
tices for the spin-exchange process which has the property of translational 
invariance is 16. The structure is such that if we take any cube of size 5 (in 
units of lattice spacing), then all the face centers, corners of the cube, and 
the center of the cube belong to a same sublattice. A primitive cell is 
4 x 2 x 2 .  

In order to realize the algorithm, it is necessary to know where the 
occupation variables are stored within the memory. For an LI x L 2 x L 3 
lattice, if we take the 1 direction to be the multispin coding direction, the 
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Fig.  1. C e n t e r  a n d  b a c k  s i t e s  a r e  n o t  s h o w n .  

number of the occupation variables per machine word is MSPC = L1/4 (of 
course, L1 must be a multiple of 4; the maximum speed can be reached at 
MSPC = 64). The words used for the storage of one row are indicated by 
the index 1, = 1 ..... 16. The rows are indicated by the second index I 2 using 
helical boundary conditions (see Fig. 1). Vectors are formed from the array 
IS with fixed 11. Thus, 11 is also the sublattice index, 11= 1,2 ..... 

Table I. Nearest  Ne ighbor  M a p  Table for  L x L x L 2 Lattice 

(x, y,  z )  

(x+ l, y,z) 

(x-- l, y,z) 

(x, y+ l,z) 

( x , y - - l , z )  

( x , y , z + l )  

(x, y ,z--1) 

( I1 , I2 ) ,  n 

(I1 + 2 , I2) ,  n : I1 ~ 7 ,8 ,15 ,16  

(I1 - 6 , I2) ,  n + ( 6 4 / M S P C )  : I1 = 7 ,8 ,15 ,16  

(I1 - 2 , I 2 ) ,  n : I 1  ~ 1,2,9,10 

(I1 + 6 , I2) ,  n - ( 6 4 / M S P C )  : I1 = 1,2,9,10 

(I1 + 8 , I2) ,  n : I1 ~< 8 

(I  1 - 4 , I2  + 1 ) n : I1 = 9 ,10 ,11 ,12 ; I2  = e v e n  

( I 1 - 4 , I 2  + 1), n -  ( 6 4 / M S P C )  : I1 = 9 ,10 ,11 ,12 ; I2  = o d d  

(I1 - 12 , I2  + 1), n : I1 = 13 ,14 ,15 ,16; I2  = o d d  

(I1 - 12,I2  + 1), n + ( 6 4 / M S P C )  : I1 = 13 ,14 ,15 ,16; I2  = e v e n  

(I1 - 8 , I 2 ) ,  n : I1  > 8 

(I1 + 4 , I2  - 1), n : I1 = 5 ,6 ,7 ,8; I2  = o d d  

(I1 + 4 , I 2 -  1), n + ( 6 4 / M S P C )  : I1 = 5 ,6 ,7 ,8 ; I2  = e v e n  

(I1 + 1 2 , I 2 -  1), n : I1 = 1 ,2 ,3 ,4;I2  = e v e n  

(I1 + 12 , I2  - 1), n - ( 6 4 / M S P C )  : I1 = 1 ,2 ,3 ,4;I2  = o d d  

(I1 + 1,I2) ,  n : I1 = o d d  

(I1 + 3 , I2  + 1 + L /2 ) ,  n : I1 = 2 ,4 ,10 ,12 ; I2  = e v e n  

(I1 + 3 , I2  + 1 + L /2 ) ,  n -  ( 6 4 / M S P C )  : I1 = 2 ,4 ,10 ,12 ; I2  = o d d  

(I1 - 5 , I2  + 1 + L /2 ) ,  n : I1 = 6 ,8 ,14 ,16 ; I2  = o d d  

( I 1 -  5 , I2 + 1 + L /2 ) ,  n + ( 6 4 / M S P C )  : I1 = 6 ,8 ,14 ,16 ; I2  = e v e n  

(I1 - 1,I2) ,  n : I1 = e v e n  

( I 1 -  3 , I 2 -  1 - L /2 ) ,  n : I1 = 5 ,7 ,13 ,15; I2  = o d d  

(I1 - 3 , I2  - 1 - L /2 ) ,  n + ( 6 4 / M S P C )  : I1 = 5 ,7 ,13 ,15; I2  = e v e n  

(I1 + 5 , I 2 -  1 - L /2 ) ,  n : I1 = 1 ,3 ,9 ,11;I2  = e v e n  

(I1 + 5 , I2  --  1 --  L /2 ) ,  n - ( 6 4 / M S P C )  : I1 = 1,3,9,11 ;I2 = o d d  



Fig. 2. Example of the vectorized multispin coding structure for an 8 • 4 • 4 lattice system. 
We set the origin to be x = y = z = 1; the physical lattice is contained in 1 ~< x ~< 8, 2 ~< y ~< 5, 
3 ~<z ~< 6. The I~ and 12 are indicated at the bot tom of each site and n at the upper right 
corner, which means  the spin is positioned in IS(I t , /2)  at the [-1 + (n - 1 )L/MSPC] th  bit. To 
make the sublattices periodic right before performing spin exchange between sublattices 1 and 
9, the physical spins have to be copied onto the "virtual" spins as indicated by curved lines. 
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(L2 + 2)(L3 + 4)/4 (the maximum 11 should be less than 216= 65536). Let 
(x, y, z) denote a lattice point, and the corresponding variable is stored 
within the word IS(I1, 12) at bit position n; then the variables on the 
adjacent lattice points can be located in the array IS using the mapping 
Table I. 

Before checking whether two spins are parallel or not (which is simply 
performed by a logical operation of two multispin-coding words), a shift 
operation may have to be performed in order to guarantee their bit posi- 
tions are right. If this shift operation is periodic ("left end-around, ''(14) i.e., 
bit 1 is shifted to bit position 64 or vice versa), the periodicity is automati- 
cally realized. On CYBER 205, the left shift has this convenient property. 
Thus, all shift operations must be carried out as left shift, a right shift by 
64/MSPC bits is carried out as a left shift by (64 -64 /MSPC)  bits. 

Periodic boundary conditions in other directions than the multispin 
coding directions are realized by the particular chosen sublattice structure 
and the use of the "virtual" spins. Figure 2 depicts an example of a vec- 
torized multispin coding structure for an 8 x 4 x 4 lattice system. The physi- 
cal lattice is contained in 1 ~< x ~< 8, 2 ~< y ~< 5, 3 ~< z ~< 6. With one extra 
layer in both top and bottom of the 2 direction and two extra layers in 
both top and bottom 3 direction, strict periodic boundary conditions can 
be realized with the help of these "virtual" spins (i.e., copies of spins of the 
physical lattice). For instance, if immediately before performing spin 
exchanges between the sublattices IS( l , . )  and IS(9,.), the physical 
spins are copied onto the virtual ones as indicated by the curved lines in 
Fig. 2, then the periodic boundary conditions for those sublattices are 
clearly established. 

5. C O M P A R I S O N  WITH N O N C O N S E R V E D  D Y N A M I C S  A N D  
THE DIFFICULTIES FOR N O N E Q U I L I B R I U M  S Y S T E M S  

Since the conservation law has forced us to choose more sublattices, 
that slows down the speed as compared with the nonconserved case. If one 
tries to apply this algorithm to nonequilibrium problem, more "randomiza- 
tion" may be needed. For example, we have applied it to a nonequilibrium 
stochastic lattice gas model (6'7~ in which the jumps in the z direction are 
biased by a constant external field E. In the strong field limit, the jump 
probability in the z direction becomes 1 if it is in the field direction or 0 
if it is against the field direction. Aside from some obvious modifications on 
P(n), there are more difficulties arising from the lack of isotropy and 
detailed balancing. The anisotropic decays of the correlation functions in 
different directions suggest that one should take the size longer or shorter 
according to whether the correlation length is longer or shorter in that 
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direction. The lack of detailed balancing is more serious, as it raises the 
question of the ergodicity which goes to the heart of the principle of the 
Monte Carlo method. In the strong field limit mentioned above, the spin 
exchange in the field direction amounts to the interchange of the sub- 
lattices. Therefore the lack of randomness tends to build up correlations 
within each sublattice. To overcome this without abandoning the vec- 
torized multispin coding, we had to introduce another control vector as a 
randomizer, in which only a fraction f of the bits were randomly set, then 
using this control vector to randomly select fraction f of the spins in the 
sublattices performing the exchanges. The test showed that, in order to 
keep the error down ( < 5 % ), we needed f ~< 1% ! Clearly, this f factor was 
the bottleneck of the efficiency in application to the nonequilibrium 
dynamics. I believe that in any nonequilibrium simulations which do not 
obey the detailed balancing, one will encounter similar problems if one tries 
to apply vectorized multispin coding techniques. 
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